



Novel Multiple DNA Microarray Assay for Species Discrimination of *Listeria spp* and *Listeria monocytogenes* on Environmental Surfaces

Food Labs/Cannabis Labs Conference June 4, 2020

Benjamin A Katchman, PhD. Principal Scientist, PathogenDx



- Introduction to current microbiology and current molecular tests
  - Focus on current Listeria spp and Listeria monocytogenes diagnostics

## **Background on PathogenDx**

- Overview of DNA Microarray Technology Design and Implementation
  - What is our approach to molecular diagnostic technology and how is that technology designed to solve the technological challenges within the food, agricultural, and medical industry

# PathogenDx Enviro<sup>X</sup> Food Safety Assay – AOAC Study

- Background on study design
- Description of the study results



- Introduction to current microbiology and current molecular tests
  - Focus on current Listeria spp and Listeria monocytogenes diagnostics

# **Background on PathogenDx**

- Overview of DNA Microarray Technology Design and Implementation
  - What is our approach to molecular diagnostic technology and how is that technology designed to solve the technological challenges within the food, agricultural, and medical industry

# PathogenDx Enviro<sup>X</sup> Assay – AOAC Study

- Background on study design
- Description of the study results



# **Traditional Microbiologic Pathogen Diagnostics:**

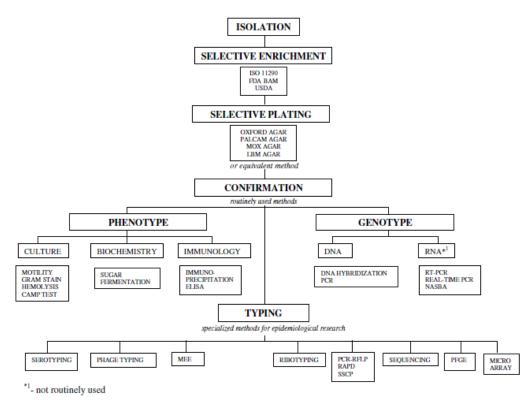
- Plate Based Culture has been the gold standard for identifying and quantitating microorganisms for the past 130 year.
- There has been significant advances in enrichment methods, media types, and incubation conditions.
- Despite these advances, you can only identify what you can culture (less than 1% of known organisms)
- <u>Problem</u>: The limitations in culture-based methods have driven the microbial testing regulations in multiple industries.
  - Expertise, time to answer, sensitivity, specificity, and broad diagnostic content.

# **Molecular Based Pathogen Diagnostics:**

- New and advanced methods of molecular detection are changing the way that we practice clinical microbiology, food, agricultural, environmental and cannabis safety.
- <u>Solution</u>: These molecular techniques offer increase sensitivity, specificity and faster turnaround times.

Gary W. Proop. Molecular Diagnostics for Detection and Characterization of Microbial Pathogens. *Clinical Infectious Diseases*. 2007. Vouga and Greub. Emerging Bacterial Pathogens: The Past and Beyond. *Clinical Microbiology and Infection*. 2015. Lagier et al. Current and Past Strategies for Bacterial Culture in Clinical Microbiology. *Clinical Microbiology Reviews*. 2015.




# Microbial Diagnostics: An Overview

| Technique             | Application Examples                             | Advantages                                                                                                                                               | Disadvantages                                                                                                                                              |
|-----------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cell Based Techniques | Culture In/On Broad and Selective<br>Media       | <ul><li>Sensitive</li><li>Time Tested (Reliable)</li><li>Qualitative and Quantitative</li></ul>                                                          | <ul> <li>Low specificity</li> <li>Time and labor intensive</li> <li>High cost</li> <li>High expertise required</li> </ul>                                  |
| Immunological         | ELISA                                            | <ul><li>High-Throughput</li><li>Qualitative and Quantitative</li><li>Ease of Use</li></ul>                                                               | <ul> <li>Detection limits for organism/<br/>antigen with low abundance</li> <li>Specificity of antibodies</li> </ul>                                       |
|                       | PCR/qPCR                                         |                                                                                                                                                          | <ul> <li>Limited multiplexing capability</li> <li>Requires enrichment</li> <li>Requires sample purification</li> <li>High cost</li> </ul>                  |
| Nucleic Acid Based    | Sequencing                                       | <ul> <li>Rapid and Easy to Perform</li> <li>Qualitative and Quantitative</li> <li>Low input amount</li> <li>Identify non-culturable organisms</li> </ul> | <ul> <li>High-cost (time, labor and expertise)</li> <li>Need for Specific Primers</li> <li>Poor limit of detection</li> <li>Requires enrichment</li> </ul> |
|                       | Hybridization (Southern or Northern<br>Blot ex.) | <ul> <li>High-throughput</li> </ul>                                                                                                                      | <ul><li>Limited multiplexing</li><li>Requires enrichment</li></ul>                                                                                         |
|                       | DNA/RNA Microarray                               |                                                                                                                                                          | <ul><li>Medium expense</li><li>Upfront investment in training</li></ul>                                                                                    |

# LISTERIA SPP AND LISTERIA MONOCYTOGENES DIAGNOSTIC ASSAYS

### Listeria Background

- Listeria is a Gram-positive bacterium commonly found in the soil and on surfaces of food processing and distribution facilities.
  - There are six species: *L monocytogenes, L innocua, L ivanovii, L seeligeri, L welshimeri, and L grayi*
  - Two species, *L monocytogenes* and *L ivanovii*, are recognized as pathogenic but there are reports of additional organisms causing illness
- *L. monocytogenes* is a foodborne intracellular pathogen whereby eating contaminated food can lead to listeriosis, with death rates at 20-30%.
- The majority of diagnostic assay, both traditional and molecular do not have the capacity to speciate *Listeria*
- Speciation as well as detection will greatly improve our understanding of *Listeria* pathogenicity and contamination rates





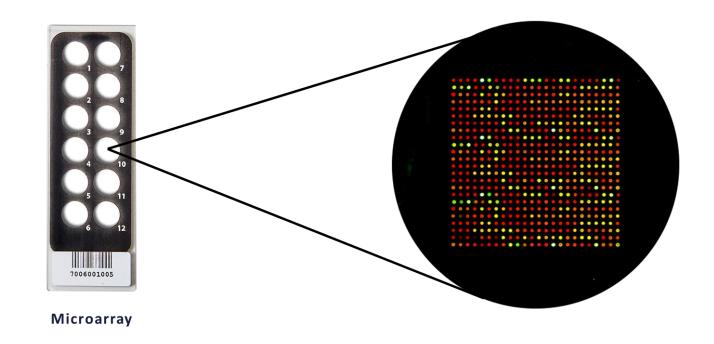
Gasanov et al. Methods for the isolation and identification of *Listeria* spp and *Listeria monocytogenes*: a review. FEMS Microbiology Reviews 29 (2005) 851-875. Liu et al. A minireview of the methods for *Listeria monocytogenes* detection. Food Anal. Methods. 3 July 2017.



- Introduction to current microbiology and current molecular tests
  - Focus on current Listeria spp and Listeria monocytogenes diagnostics

# Background on PathogenDx

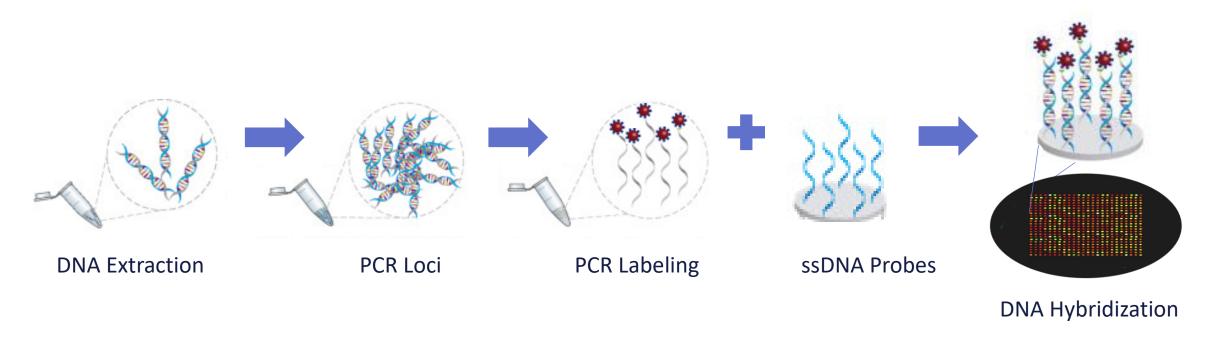
- Overview of DNA Microarray Technology Design and Implementation
  - What is our approach to molecular diagnostic technology and how is that technology designed to solve the technological challenges within the food, agricultural, and medical industry


# PathogenDx Enviro<sup>X</sup> Assay – AOAC Study

- Background on study design
- Description of the study results



DNA microarray technology is a high-throughput diagnostic tool for the detection and identification of pathogenic organisms. The development of DNA microarrays is divided into two sections:


- 1. In-silico Design: Sequence alignment, primer and probe design
- 2. In-vitro Testing: DNA extraction, PCR primer and probe concentration and amplification, and DNA hybridization probe specificity



Flexible Design, Adaptable, High-Throughput, Time and Cost Effective, Sensitive and Specific



DNA microarray technology is a high-throughput diagnostic tool for the detection and identification of pathogenic organisms.



Flexible Design, High-Throughput, Time and Cost Effective, Sensitive and Specific, without Sample Enrichment



# Enviro×

# Simple. Cost Effective. Comprehensive.



# Current State of the Enviro<sup>x</sup> Assay

- Internal validation complete
- External AOAC surface validation in progress for highlighted organisms in an expanded Food Safety Chip

#### TARGET ORGANISMS: BACTERIAL

- Pan Bacterial (TAB)
- Bile-Tolerant Gram-neg
- Enterobacteriaceae
- Salmonella/Enterobacter
- Salmonella spp
- Escherichia/Shigella
- Escherichia stx1
- Escherichia stx2
- Escherichia eae
- Pseudomonas spp
- Listeria spp
- Listeria monocytogenes
- Campylobacter spp
- Xanthamonas
- Aeromonas spp
- Bacillus spp
- Vibrio spp
- Staphylococcus spp
- Hafnia
- Klebsiella
- Serratia
- Klebsiella
- Chromobacterium spp
- Bacillus spp
- Streptomyces spp
- Legionella
- Alkanindiges
- Citrobacter
- Clostridium spp
- Yersinia
- Panteoa

#### TARGET ORGANISMS: FUNGAL

- Pan Fungal (TY&M)
- Aspergillus spp
- Botrytis spp
- Penicillium spp
- Fusarium spp
- Mucor spp
- Histoplasma
- Monocillium
- Tricoderma
- Chaetomium
- Stachybotrys spp
- Alternaria
- Phoma/Eppicoccum
- Pan Powdery Mildew
- Golovinomyces
- Blumeria
- Erysiphe
- Podosphaera spp
- Oidiodendron
- Rhodotorula
- Cladosporium spp
- Candida spp



- Introduction to current microbiology and current molecular tests
  - Focus on current Listeria spp and Listeria monocytogenes diagnostics

### **Background on PathogenDx**

- Overview of DNA Microarray Technology Design and Implementation
  - What is our approach to molecular diagnostic technology and how is that technology designed to solve the technological challenges within the food, agricultural, and medical industry

# PathogenDx Enviro<sup>X</sup> Food Safety Assay – AOAC Study

- Background on study design
- Background on expanded array content and layout
- Description of the study results

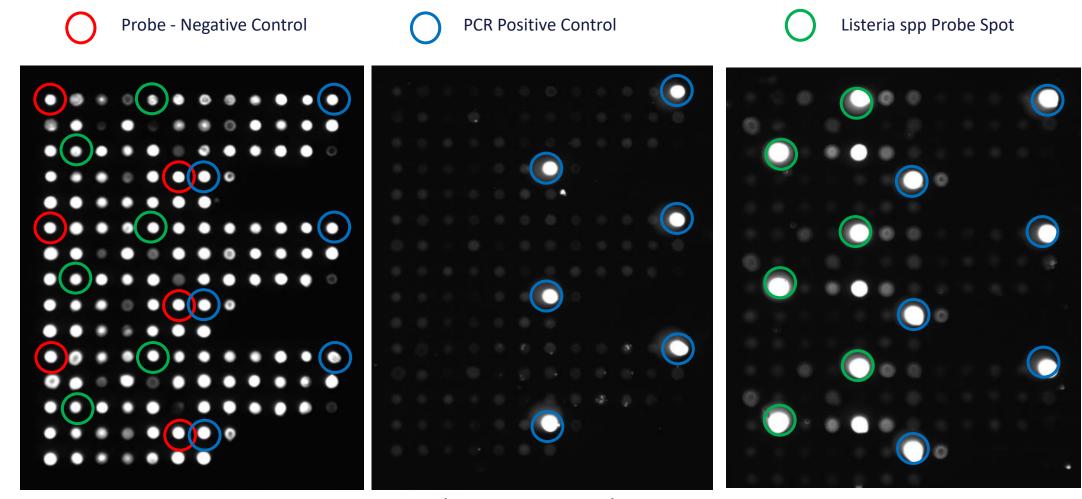


### **Study Design Outline**

- 1. Inclusivity and Exclusivity Study
  - Salmonella spp 100 inclusive / 30 exclusive
  - *Listeria monocytogenes* 50 inclusive / 30 exclusive
  - *Listeria spp* 25 inclusive / 25 exclusive

### 2. Matrix Study

- Stainless steel, plastic, sealed concrete, and rubber
- LoD fractional recovery (~ 1 CFU)
- 3. Product Consistency and Stability
- 4. Robustness
- 5. Instrument Variation


# Enviro<sup>×</sup> Food Safety Chip –Array Content

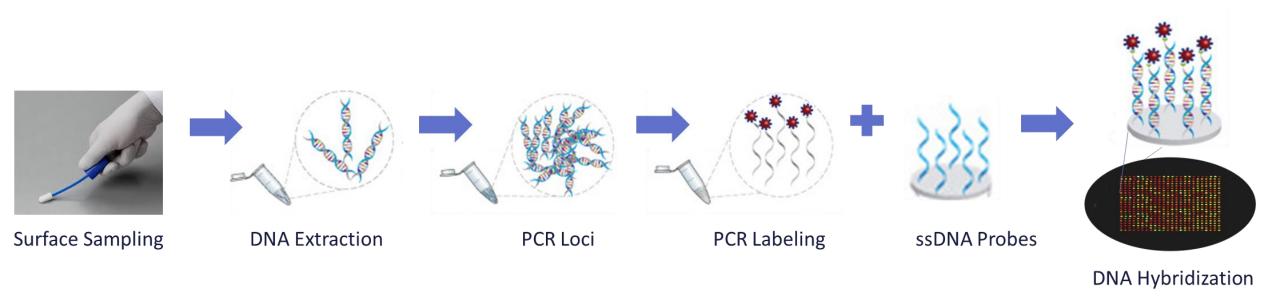
### **AOAC Evaluated Array Content**

- The genus *Listeria* spp contains 6 Species: •
  - L. monocytogenes
  - L. innocua •
  - L. seeligeri
  - L. welshimeri
  - L. ivanovii •
  - L. grayi
- Listeria monocytogenes
- Salmonella spp

| 1  | L mono-IAP2-1.1            | 31 | Salmonella 70-invA1-K1    |
|----|----------------------------|----|---------------------------|
| 2  | L mono-IAP2-1.2            | 32 | Salmonella 70-invA1-I1a   |
| 3  | L ivanovii -IAP1B-1.1      | 33 | Salmonella 70-invA1-I1mix |
| 4  | L mono-IAP2-1.4            | 34 | Salmonella invA2-150-1.1  |
| 5  | L mono-IAP3-1.1            | 35 | L ivanovii A-grp2b-1.1    |
| 6  | L mono-IAP3-1.2            | 36 | Salmonella invA2-150-3.1  |
| 7  | L welshimeri - 1.1         | 37 | Salmonella invA3-700-1.1  |
| 8  | L mono-IAP3-1.4            | 38 | Salmonella invA3-700-2.1  |
| 9  | L mono-IAP3-1.5            | 39 | Salmonella invA3-1700-1.1 |
| 10 | L mono-IAP3-1.6            | 40 | L seeligeri A-grp2b-1.1   |
| 11 | L mono-IAP3-1.7            | 41 | Salmonella invA3-1700-4.1 |
| 12 | L mono-IAP4A-1.1           | 42 | Negative Control          |
| 13 | L monB-grp2b-1.1           | 43 | Positive Control          |
| 14 | L mono-IAP4B-1.1           | 44 | Blank                     |
| 15 | L mono-HLY1-1.1            | 45 | Blank                     |
| 16 | L monC-grp2b-1.1           | 46 | Blank                     |
| 17 | L mono-HLY1-1.3            | 47 | Blank                     |
| 18 | L welshmeri A-grp2b-1.1    | 48 | Blank                     |
| 19 | Lmono-PRFA1-1.1            | 49 | L grayi A-grp2b-1.1       |
| 20 | Lmono-PRFA1-1.2            | 50 | L innocua -IAP1B-1.1      |
| 21 | Listeria spp -IAP1-1.1     | 51 | L innocua -IAP1B-1.2      |
| 22 | L martii A-grp2b-1.1       | 52 | L innocua -IAP1B-1.3      |
| 23 | Listeria spp-IAP1-1.3      | 53 | Lmono-IAP1B-1.1           |
| 24 | L innocua A-grp2b-1.1      | 54 | Lmono-IAP1B-1.2           |
| 25 | Listeria spp -IAP1-1.5     | 55 | L grayii B-grp2b-1.1      |
| 26 | Listeria spp 2-16S-H3-S-J1 | 56 | Blank                     |
| 27 | List-grp1A-1.1             | 57 | Blank                     |
| 28 | List-grp1A-1.1b            | 58 | Blank                     |
| 29 | List-grp1A-1.1D            | 59 | Blank                     |
| 30 | Listm-grp2b-1.1            | 60 | Blank                     |
|    |                            |    |                           |





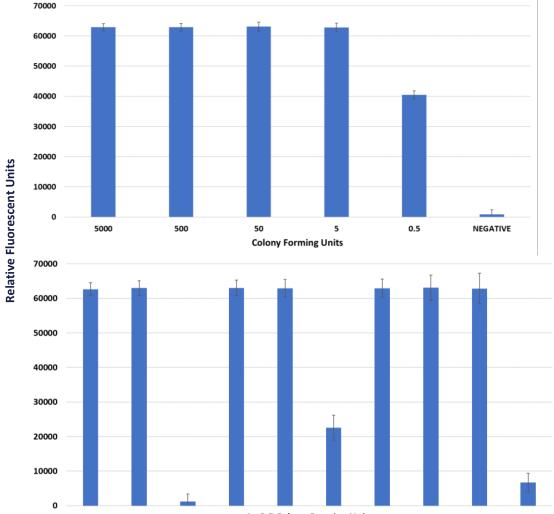

Example Cy5 Image To show Every Spot

Example Cy3 Image To show just the positive control

Example Cy3 Image To show Positive Control and Listeria spp

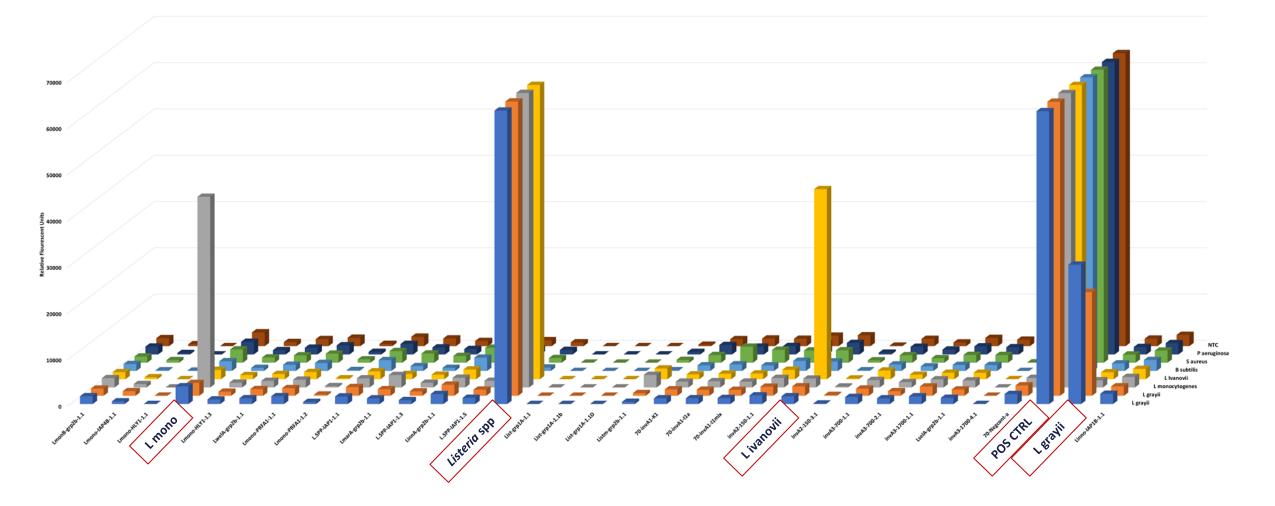


DNA microarray technology is a high-throughput diagnostic tool for the detection and identification of pathogenic organisms that can be used for direct surface sampling.




Flexible Design, High-Throughput, Time and Cost Effective, Sensitive and Specific, without Sample Enrichment

# LOWER LIMIT OF DETECTION PER AOAC GUIDELINES


## Procedure

- 1. Clean stainless-steel surface with:
  - 10% Bleach and sit for 5 min
  - 70% Ethanol wipe and let the surface dry completely
  - Tape off a 4-inch x 4-inch area
- 2. Spot down cells:
  - Suspend the cells in media, at ~ 50x the concentration you are aiming to detect, accounting for cell death during incubation
- 3. Incubate the cells for 16 24 hours
- 4. Using the World Bio PUR-Blue Hi-Cap Swab the surface in a "Z" pattern in 4 directions
- 5. Place the swab back into the sterile container
- 6. Vortex to release organisms:
  - Proceed with PDx Sample Preparation
  - Proceed with enrichment and plating



#### Analytical Sensitivity of Listeria monocytogenes on Stainless Steel Surfaces







#### Enviro<sup>X</sup> - Food and Environmental Safety

- PathogenDx has created a series of multiplex diagnostic arrays for detection, quantification, and speciation
- Each detection assay has a LLOD of 1 CFU and have been developed for use in a variety of matrices
  - Food, Cannabis, Surfaces, Air
- AOAC validation study is ongoing with an expected completion date of late July

# Given the current regulatory challenges in Cannabis with microbial testing there is a need for flexible, adaptable and rapid diagnostic assays.

- Detect<sup>X</sup> Pathogenic E. coli, Salmonella enterica, Staph aureus, Pseudemonas aeruginosa, Listeria monocytogenes, and 4 Aspergillus (LLOD 1 CFU)
- Quant<sup>X</sup> Broad Class Indicators (TYM, TAB, BTGN, ENT Dynamic Range 100 1,000,000 CFU)
- $\circ$  Cannabis Using conventional methods would require ~13 different diagnostic tests to be performed
  - Given complexity of matrices  $\rightarrow$  not practical and economically sustainable for labs
- This is driving new innovative microbial diagnostics in the industry (qPCR, NGS, and DNA Microarrays)



# **ANY QUESTIONS?**

www.PathogenDx.com

Benjamin A Katchman, PhD. bkatchman@pathogendx.com

