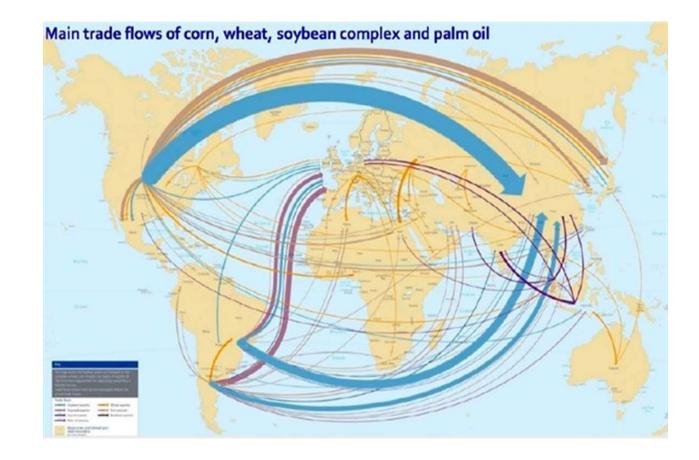
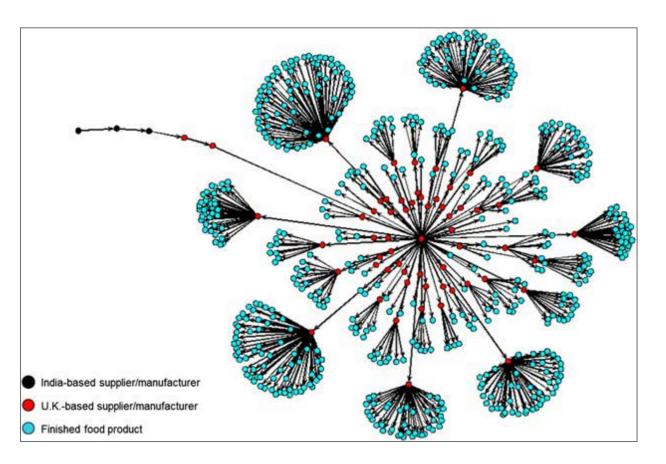
Documentary Standards and Reference Materials -Safeguarding the Supply Chain Together

Steven Gendel, PhD Senior Director, Food Science Food Chemicals Codex

The supply chain problem


One view of the food supply chain is simple, linear, and stable

The supply chain problem


- The reality is that food supply chains are complex, non-linear, and subject to sudden disruption
- This creates many opportunities for adulteration, fraud, and misunderstanding

Protecting the Supply Chain

- Learning from our public health colleagues
 - Test early and test often
 - -Supply chain transparency = effective containment
 - -Communicate accurately and clearly


Everstine, K. Supply Chain Complexity and Economically Motivated Adulteration. In: *Food Protection and Security - Preventing and Mitigating Contamination during Food Processing and Production*. Shaun Kennedy (Ed.) Woodhead Publishing: 26th October 2016.

Data source: Food Standards Agency of the U.K. National Archives and The Guardian.

SAFEGUARDING THE INTEGRITY OF THE GLOBAL FOOD SUPPLY

Protecting the Supply Chain

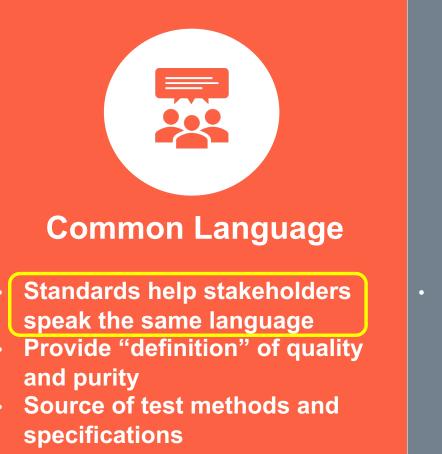
- Learning from our public
 health colleagues
 - Test early and test often
 - -Supply chain transparency = effective containment
 - -Communicate accurately and clearly

Everstine, K. Supply Chain Complexity and Economically Motivated Adulteration. In: *Food Protection and Security - Preventing and Mitigating Contamination during Food Processing and Production*. Shaun Kennedy (Ed.) Woodhead Publishing: 26th October 2016.

Data source: Food Standards Agency of the U.K. National Archives and The Guardian.

SAFEGUARDING THE INTEGRITY OF THE GLOBAL FOOD SUPPLY

Common Language


- Standards help stakeholders speak the same language
- Provide "definition" of quality and purity
- Source of test methods and specifications

- Ensure the buyers/consumers get what they think they are getting, e.g.:
 - Synthetic vs Natural
 - Purity
 - Source animal vs. plant

- Ensure Quality & Safety of the food ingredients
- Prevent fraudulent activities
- Standards are based on the ingredient as approved by regulators

- Ensure the buyers/consumers get what they think they are getting, e.g.:
 - Synthetic vs Natural
 - Purity
 - Source animal vs. plant

- Ensure Quality & Safety of the food ingredients
- Prevent fraudulent activities
- Standards are based on the ingredient as approved by regulators

Common Language

- Standards help stakeholders speak the same language
- Provide "definition" of quality and purity
- Source of test methods and specifications

- Ensure the buyers/consumers get what they think they are getting, e.g.:
 - Synthetic vs Natural
 - Purity
 - Source animal vs. plant

- Ensure Quality & Safety of the food ingredients
- Prevent fraudulent activities
- Standards are based on the ingredient as approved by regulators

- Standards help stakeholders
 speak the same language
- Provide "definition" of quality and purity
- Source of test methods and specifications

- Ensure the buyers/consumers get what they think they are getting, e.g.:
 - Synthetic vs Natural
 - Purity
 - Source animal vs. plant

- Ensure Quality & Safety of the food ingredients
- Prevent fraudulent activities
- Standards are based on the ingredient as approved by regulators

What is a food standard?

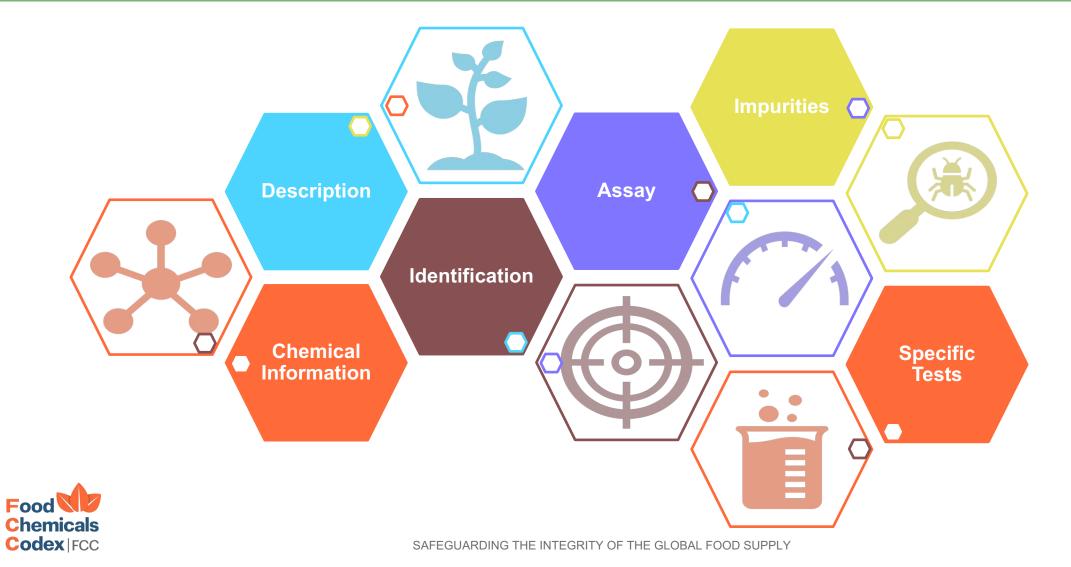
- "A set of criteria that a food must meet if it is to be suitable for human consumption, such as source, composition, appearance, freshness, permissible additives, and maximum bacterial content."
 - A Dictionary of Food and Nutrition 2005, Oxford University Press
- Effective standards include both the what and the how
 - -What = specifications
 - How = methods

Standards = Specifications, methods, & materials

- Specifications are a description
 - They set expectations, like highway speed limits

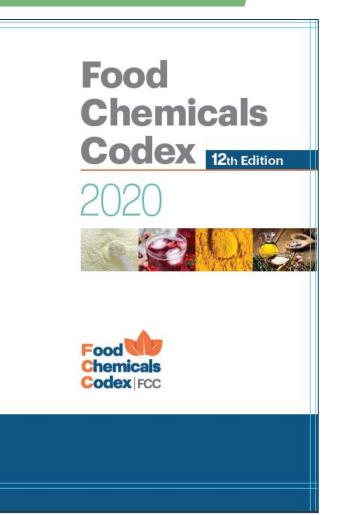
Standards = Specifications, methods, & materials

- Specifications are a description
 - They set expectations, like highway speed limits
- Methods are needed to determine if a sample meets the specifications
 - It doesn't help to have speed limits on highways if cars don't have speedometers

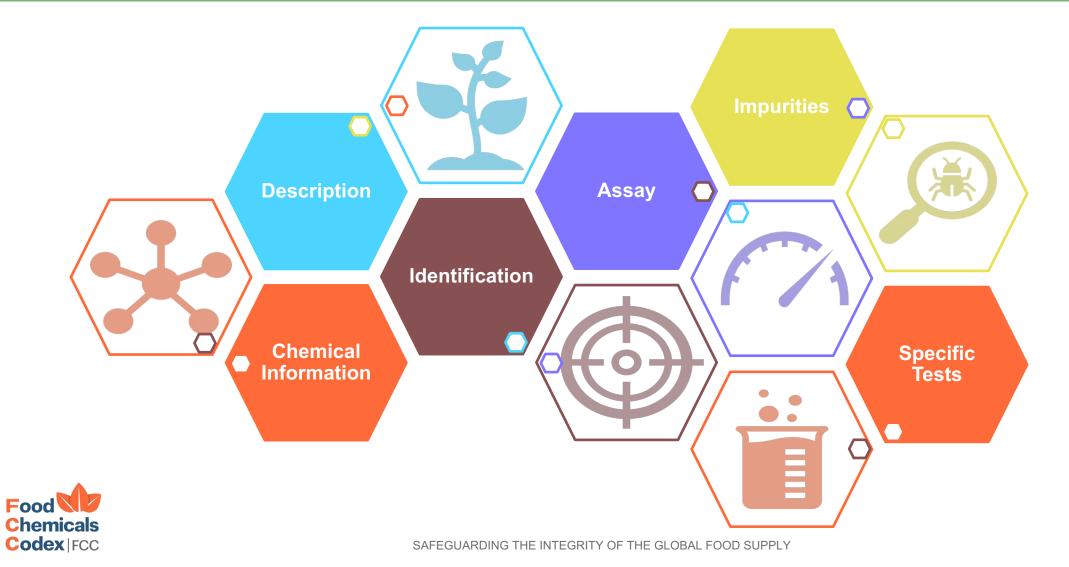


Standards = Specifications, methods, & materials

- Specifications are a description
 - They set expectations, like highway speed limits
- Methods are needed to determine if a sample meets the specifications
 - It doesn't help to have speed limits on highways if cars don't have speedometers
- Reference materials are used to be sure that the method is working or to evaluate the result
 - How do you know that the speedometer in your car or the police radar are accurate (enough)?



An Example – The Food Chemicals Codex


Introduction to the FCC

- The FCC was created by the US-FDA and the US National Institute of Medicine in 1966
- Published by USP since 2006
- >1250 standards for additives, ingredients, and other food chemicals
- The FCC is the only fully independent source of food ingredient standards

An Example – The Food Chemicals Codex

Rice Bran Oil Proposed in: Jun 2018
Rice Bran Oil Oryza sativa Bran Oil Rice Oil
CAS: [68553-81-1]

UNII: LZO6K1506A

DESCRIPTION

Rice Bran Oil occurs as a clear, yellow, viscous liquid. It is the edible oil obtained by a process that includes pressing, solvent extraction, and refining from the bran of *Oryza sativa*. It is known to contain an antioxidant gamma-oryzanol, a mixture of steryl and other triterpenyl esters of ferulic acids.

Function: Food or salad oil; component of margarine or shortening; coating agent; texturizer

Packaging and Storage: Store in a cool place protected from light in full, tight containers that are made from steel or aluminum and that are suitably lined.

Descriptive Information

Including synonyms

Weight % (Range)

NMT 0.2

NMT 1.0

14 - 23

NMT 0.5

0.9 - 4.0

IDENTIFICATION

• A. FATTY ACID COMPOSITION, APPENDIX VII

Fatty Acid

12:0

14:0

16:0

16:1

18:0

Acceptance criteria: A sample exhibits the following composition profile of fatty acids:

Identification tests and purity assays

Including acceptance criteria

IMPURITIES

Inorganic Impurities

- LEAD, LEAD LIMIT TEST, ATOMIC ABSORPTION SPECTROPHOTOMETRIC GRAPHITE FURNACE METHOD, METHOD II, APPENDIX IIIB Acceptance criteria: NMT 0.1 mg/kg
- ARSENIC, ELEMENTAL IMPURITIES BY ICP, APPENDIX IIIC: Use nitric acid, rather than aqua regia during the sample preparation.
 - Acceptance criteria: NMT 0.1 mg/kg
- WATER, WATER DETERMINATION, APPENDIX IIB

Analysis: In place of 35–40 mL of methanol, use 50 mL of a mixture of chloroform and methanol (50:50, v/v) to dissolve the sample.

Acceptance criteria: NMT 0.05%

Organic Impurities

• HEXANE-INSOLUBLE MATTER, *Appendix VII* Acceptance criteria: NMT 0.05% Tests and criteria for impurities

• B. GAMMA-ORYZANOL IDENTIFICATION

Mobile phase: Methanol, acetonitrile, and isopropanol (50:45:5, v/v/v)

Diluent: Dichloromethane and isopropanol (10.90, v/v)

Standard solution: 1.5 mg/mL of USP Gamma-oryzanol RS in Diluent

Sample solution: Add 2.5 g of Rice Bran Oil to a 5 mL volumetric flask and dilute with *n*-hexane to volume. Condition the solid phase extraction (SPE) cartridge¹ with two 2-mL aliquots of *n*-hexane. Load 1 mL of the diluted sample onto the cartridge and wash with two 1-mL aliquots of a mixture of *n*-hexane and acetone (99:1, v/v). Elute the cartridge with three 2-mL aliquots of a mixture of *n*-hexane and acetone (91:9, v/v), collect the eluate, and immediately evaporate it to dryness under a stream of nitrogen. Dissolve and wash the residue with 0.8 mL of *Diluent* (200 µL, 4 times), and transfer the solution into a 1-mL volumetric flask. Add *Diluent* to volume.

Chromatographic system, Appendix IIA

Mode: HPLC

Detector: Diode array detector in the range of 230-400 nm

Column: 4.6-mm x 250-mm; packed with octadecylsilane chemically bonded to 5-µm porous silica or ceramic microparticles²

Column temperature: 25°

Flow rate: 1.0 mL/min

Acquisition time: 60 min

Injection volume: 20 µL

System suitability

Sample: Standard solution

Use of a reference material

What is a reference material

- ISO Guide 30:
 - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process
 - Properties can be quantitative or qualitative, e.g. identity of substances or species.

What is a reference material

- ISO Guide 30:
 - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process
 - Properties can be quantitative or qualitative, e.g. identity of substances or species.

What is a reference material

- ISO Guide 30:
 - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process
 - Properties can be quantitative or qualitative, e.g. identity of substances or species.

Uses for reference materials

- Metrological traceability
- Quantitation
- System suitability testing
- Equipment and procedure calibration
- Laboratory controls
- Performance testing
- Method development and validation

Based on ISO Guide 33

Protecting the Supply Chain

- Learning from our public
 health colleagues
 - Test early and test often
 - -Supply chain transparency = effective containment
 - -Communicate accurately and clearly

Everstine, K. Supply Chain Complexity and Economically Motivated Adulteration. In: *Food Protection and Security - Preventing and Mitigating Contamination during Food Processing and Production*. Shaun Kennedy (Ed.) Woodhead Publishing: 26th October 2016.

Data source: Food Standards Agency of the U.K. National Archives and The Guardian.

SAFEGUARDING THE INTEGRITY OF THE GLOBAL FOOD SUPPLY

Some final thoughts

- The future is under no obligation to look like the past
- We live in a dynamic environment, that can (and does) change rapidly
- History is informative, not determinative, when people are the problem (i.e., fraud, EMA, misrepresentation)

THANK YOU