

Bundesministerium
 Klimaschutz, Umwelt,
 Energie, Mobilität,
 Innovation und Technologie

Inverse modelling of Austrian CH4 fluxes University of Vienna

USER & STAKEHOLDER CONFERENCE CLOSURE MEETING

26. – 27.02.2025

Keep it traceable!

FFG project || GHG-KIT [contract #FO999893432]

OBJECTIVES

Improve estimates of CH₄ fluxes using inverse modelling

Reduce uncertainty on emissions in Austria

CHALLENGES

Limited stationary observation network \rightarrow Austria not part of ICOS

Limited quality of observations from current satellite missions

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

cloudflight

IN SITU OBSERVATION NETWORK

- **51** observation **sites for 2022** (48 ICOS sites + 3 in Austria)
- Austrian observation sites:
 - \rightarrow SNB (mountain site)
 - \rightarrow IAO and VUCL (urban sites)
- **39** observation sites for **final inversion**, all outside of Austria
 - \rightarrow Mountain sites not well represented by transport model
 - \rightarrow Urban sites would require higher resolution to capture local influences
- 5 stations in vicinity of Austria

European in situ observation network, 2022

- All data sets: **monthly** temporal resolution
- Different spatial resolutions
 - \rightarrow Re-gridded to 0.25° x 0.25° and 1.0° x 1.0°

Туре	Source/Sink	Reference
Anthropogenic	All combined	GeoSphere, based on CAMS
Natural	Wetlands	WetCHART v1.3.1 (2019)
	Wildfires	GFED v4.1 beta (2022)
	Geological	Based on Etiope et al. (2019), scaled to 15.4 Tg/yr
	Termites	Saunois et al. (2020) (GCP-CH4)
	Ocean	Weber et al. (2019)
	Soil Sink	Ridgwell et al. (1999)

eod

FLEXPART AND FLEXINVERT SET-UP

- **Global output** at 1° x 1° spatial resolution
- **Nested output** at 0.25° x 0.25° over European domain
 - \rightarrow Longitudes: 15° W to 35° E
 - \rightarrow Latitudes: 35° N to 72° N
- Trajectories of particles calculated 50 days backwards in time
- Inversion domain: Europe
- CH₄ fluxes optimized at **monthly temporal resolution**
- Initial mixing ratios based on concentration fields (FLEXPART CTM, provided by NILU)
 - \rightarrow Optimized over latitude bands

FLEXPART Footprint for inversion network, annual average 2022

CALCULATION OF A PRIORI CH_4 CONCENTRATIONS

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

GeoVille

eoc

cloudflight

CALCULATION OF A POSTERIORI CH_4 CONCENTRATIONS

eoc

ANNUAL CH₄ FLUXES IN EUROPE

Total prior Europe: **37 Tg** [18 Tg – 56 Tg]

• Saunois et al., 2024: ~42 Tg [29 Tg – 57 Tg]

Total posterior Europe: 29 Tg [17 Tg - 41 Tg]

• Saunois et al., 2024: ~31 Tg [24 Tg – 36 Tg]

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Prior CH₄ fluxes in Europe, monthly average 2022

CH₄ FLUX INCREMENT IN EUROPE

Increment of CH₄ fluxes in Europe, 2019 (CIF-CHIMERE) Figure: A. Sicsik-Paré (ESA SMART-CH4), personal communication

- Posterior fluxes predominantly increased in western, south-western and central Europe
- Posterior fluxes predominantly decreased in Scandinavia, Italy, the UK and south-eastern Europe

GeoVille

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Mc GeoSphere Austria

MONTHLY CH₄ FLUXES IN EUROPE

- **Prior** CH₄ fluxes:
 - \rightarrow Higher during summer months due to influence of natural CH₄ sources
 - \rightarrow Maximum in July (3.7 Tg), minimum in January (2.6 Tg)
- **Posterior** CH₄ fluxes:
 - \rightarrow Lower than prior for most months
 - \rightarrow Highest discrepancies in January and September (~1.3 Tg lower)
 - \rightarrow Posterior only slightly higher than prior in February and March (~0.1 Tg higher)

EVALUATION OF INVERSION PERFORMANCE

Taylor diagram for sites close to North Sea

- Taylor diagram shows how well modelled patterns match observations
- Improvement most evident at stations close to North
 Sea:
 - \rightarrow Prior concentrations already match observations well
 - \rightarrow Underestimation of the variability in prior CH₄ concentrations

→ **Posterior** concentrations show **better agreement** with amplitude and pattern of observations

en

EVALUATION OF INVERSION PERFORMANCE

Taylor diagram for sites at high altitudes

- Least improvement at observation sites at high altitudes (600 – 1000 masl):
 - → Little difference between prior and posterior CH_4 concentrations
 - → **Posterior** CH_4 concentrations show **slight improvement** in variability
 - \rightarrow Mountainous terrain more challenging to model and stations far from emission sources

en

- In 2022: **3 observation** sites measuring CH₄ concentrations **in Austria**
 - \rightarrow Sonnblick (SNB): mountain site in the Alps
 - → Innsbruck Atmospheric Observatory (IAO): measurements on rooftop in city centre of Innsbruck
 - → Vienna Urban Carbon Laboratory (VUCL): measurements at Arsenal tower since May 2022
- Mountain sites (above 1000 masl) excluded from inversion
 - \rightarrow **Observations lower** than **modelled background** concentrations led to high negative CH₄ fluxes
 - \rightarrow **Exclusion** of **SNB** and **5 ICOS sites** in vicinity of Austria
- 5 ICOS sites remaining in vicinity of Austria
 - \rightarrow 3 of them at high altitudes

In situ observation sites in and around Austria

eodc

GHG

CH₄ CONCENTRATIONS IN AUSTRIAN CITIES

June 2022 Vienna

- **Observations lower** than modelled concentrations
- **Background** concentrations partly **too high** ٠
 - \rightarrow Especially during summer months
- Measurement peaks not well captured ٠

Innsbruck

- **Observations much higher** than modelled concentrations •
 - \rightarrow Both prior and posterior

en

Measurement peaks not well captured ٠

Prior CH₄ fluxes in Austria, monthly average 2022

Increment of CH₄ fluxes in Austria, monthly average 2022

ANNUAL CH₄ FLUXES

- Total prior: 700 Gg [350 Gg 1050 Gg]
- Anthropogenic prior: 475 Gg [237.5 Gg 712.5 Gg]
 - → **Reported** CH_4 emissions in Austria 2022: ~**260 Gg** (NIR Austria, 2024)

 \rightarrow Lower than estimated prior, but within uncertainty ranges

- Posterior CH₄ fluxes increased all over Austria
- Slight reduction in north-east and south of Austria
- Total posterior: 910 Gg [752 Gg 1068 Gg]

MONTHLY CH₄ FLUXES IN AUSTRIA

م)) در GeoSphere

Austria

• **Prior** CH₄ fluxes:

 $Comparison of prior and posterior <math>Cri_4$ fuxes in Austria, monthe

GeoVille

eoc

cloudflight

- \rightarrow Higher during summer months due to influence of natural CH₄ sources
- \rightarrow Anthropogenic CH₄ emissions nearly constant (between 38.1 Gg and 41.3 Gg)
- **Posterior** CH₄ fluxes:
 - \rightarrow Higher than prior for most months
 - \rightarrow Minimum in May (47.9 Gg)
 - \rightarrow Posterior CH₄ fluxes **significantly higher** than prior in **February** (~60 Gg) and **March** (~42 Gg)
 - \rightarrow Except February and March: posterior CH₄ fluxes within uncertainty ranges of prior

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

EVALUATION OF INVERSION PERFORMANCE

Taylor diagram for sites close to Austria

- 3 stations close to Austria at high altitudes
 - → Posterior CH₄ concentrations show slight improvement in variability
- 2 stations close to Austria in rural areas
 - → Posterior CH₄ concentrations show significantly
 better agreement with observations

enc

EVALUATION OF INVERSION PERFORMANCE

Taylor diagram for sites in Austria

• 2 urban sites in Austria excluded from inversion

→ Innsbruck: slight improvement in posterior CH_4 concentrations but still not good match with observation

→ **Vienna**: modelled CH₄ concentrations overestimate variability, **prior better than posterior**

 \rightarrow Data not suitable to verify inversion

enc

Europe

- Prior fluxes possibly overestimated for 2022
- Good agreement with other studies
- Improvement of posterior CH₄ fluxes especially in regions well constrained by observations (e.g. north-west Europe)

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Austria

- Prior fluxes possibly underestimated for 2022
- Lack of observation sites in and around Austria
- No suitable data for verification of posterior CH₄ fluxes

- Observation from **TROPOMI** instrument, data product from University of Bremen
- Global output at 1° x 1° spatial resolution
- **Nested output** at 0.25° x 0.25° over Austrian domain
 - \rightarrow Longitudes: 7° E to 19° E
 - \rightarrow Latitudes: 41° N to 53° N
- Trajectories of particles calculated 10 days backwards in time
- Two months of 2022: January and July
- Inversion domain: Austrian domain
- CH₄ fluxes optimized at **monthly temporal resolution**
- Initial mixing ratios based on concentration fields (FLEXPART CTM)

TROPOMI DATA OVER INVERSION DOMAIN

TROPOMI observations, monthly average January 2022

January:

- High heterogeneity of observations
- Outliers in observations, e.g. surrounding the Alps
- Possibly influenced by albedo, cloud coverage, solar zenith angle and/or less sunlight in northern hemisphere

GeoVille

July:

- Observations homogeneous
- Slightly higher concentrations surrounding the Alps

Bundesministerium
 Klimaschutz, Umwelt,
 Energie, Mobilität,
 Innovation und Technologie

TROPOMI observations, monthly average July 2022

loudflight

)/ (GeoSphere

Austria

TU

COMPARISON IN SITU AND SATELLITE INVERSION

Difference in situ and satellite inversion, January 2022

Difference in situ and satellite inversion, July 2022

January:

- Satellite inversion shows poor agreement with in situ inversion
- In situ inversion far higher in all of Austria

GeoVille

 Satellite inversion (~25 Gg) lower than both in situ inversion (~59 Gg) and prior CH₄ fluxes (~48 Gg)

July:

- In situ inversion higher in the north-west of Austria
- Both in situ inversion (~82 Gg) and satellite inversion (~76 Gg) close to prior CH₄ fluxes (~74 Gg)

cloudflight

)) (GeoSphere

SATELLITE INVERSION OVER SOUTH ASIA

- Study over South Asia by Rakesh Subramanian for year 2020
- Particles followed **20 days backward** in time
- Spatial resolution: 1° x 1°
- → Regions where **high CH₄ emissions** occur can already be **recognized in TROPOMI observations** (e.g. Bangladesh and North India)

TROPOMI observations, monthly average September 2020

SATELLITE INVERSION OVER SOUTH ASIA

Prior and posterior CH₄ fluxes for 2020, Preliminary results from Rakesh Subramanian

- **Posterior** CH_4 fluxes ~76 Tg \rightarrow **5 Tg higher** that prior fluxes
- Positive increments in the eastern and northeastern parts of India and Bangladesh, higher waste-related emissions in Delhi
- Underestimated sectors: agriculture and wetlands

Solo and a second

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Austria

- Inversion shows good agreement with in situ inversion in summer but poor agreement during winter
- Limited quality of data throughout the year e.g. because of terrain in and around Austria
- Inversion results currently not reliable enough for Austrian domain

South Asia

- Better quality of data throughout the year
- Valuable for regions with limited accessibility of in situ observations and poor estimated of prior CH₄ fluxes

Limited number of sites in and around Austria

Many mountain sites close to Austria → not optimal for inverse modelling

Urban sites in Austria could not improve constraints

Current satellite observations not reliable for Austria around the whole year

No suitable data for verification

MODELLING

Improve spatial resolution over Austria (e.g. FLEXPART-WRF) → Better prior estimates especially of natural CH₄ emissions needed Improve background estimates (e.g. FLEXPART-LCM)

OBSERVATIONS

Beneficial for Austria to become part of ICOS network → Austria more attractive for European projects

Possibly better satellite data in upcoming missions (e.g. MERLIN) Support from mobile campaigns (e.g. for verification)

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Thanks For Your Attention

University of Vienna Team

Bundesministerium eraie Mohilität novation und Technologie

Austria